New distribution records of the Star Fruit Flower Moth
(Diacrotricha fasciola) (Lepidoptera: Pterophoridae)
in Australia and Timor-Leste

Stacey J. Anderson1, Glenn A. Bellis1, Brian M. Thistleton2,
Lucy T. Tran-Nguyen2, Ted. D. Edwards3, Donald Hobern4,
Valente Quintao5, Luke Halling6 and James A. Walker7

1 Australian Government Department of Agriculture,
PO Box 37846, Winnellie, NT 0812, Australia.
Email: stacey.anderson@agriculture.gov.au

2 Department of Primary Industry and Fisheries,
GPO Box 3000, Darwin, NT 0801, Australia.

3 Honorary Fellow, CSIRO, National Research Collections Australia,
GPO Box 1700, Canberra, ACT 2601, Australia.

4 Global Biodiversity Information Facility,
Universitiesparken 15, Copenhagen, Denmark.

5 Ministry of Agriculture and Fisheries, Comoro, Dili, Timor-Leste.

6 Australian Government Department of Agriculture,
PO Box 350, Broome, WA 6725, Australia.

7 Australian Government Department of Agriculture,
PO Box 96, Cairns International Airport, QLD 4870, Australia.

Abstract

Specimens collected in northern Australia since 2012 confirm an earlier record of
Star Fruit Flower Moth (Diacrotricha fasciola) (family Pterophoridae) in northern
Queensland and expand its known distribution to include the Northern Territory and
Timor-Leste. This moth is specific to, and a serious pest of, two Averrhoa species
(Oxalidaceae) in South East Asia.

Introduction

The Star Fruit Flower Moth (Diacrotricha fasciola Zeller, 1852) (Lepidoptera:
Pterophoridae) is regarded as a serious pest of fruit of Carambola (Averrhoa carambola)
in South East Asia, including the Indonesian archipelago (Zeller 1852; Meyrick 1907;
Tan 1992; Waterhouse 1993; Robinson et al. 2001). Despite its pest status, there are
actually few published specimen-based records. Zeller (1852) described the species
from Java, Indonesia. Alipanah et al. (2011) reported it from Sentani, West Papua,
Indonesia. Bainbridge Fletcher (1932) and Sidhu et al. (2010) reported specimens from
India, and Tan (1992) reported it from Malaysia. Photographic records of this species
exist from Taiwan (The Taiwan Biodiversity Information Facility 2012), and from Hong Kong (Hong Kong Moths 2009), as well as the first, and apparently only, record of this species in Australia from Kuranda, Queensland (Richardson 2012).

Diacrotica fasciola is host-specific to two species of Averrhoa (Oxalidaceae), A. carambola and A. bilimbi (Bainbrigge Fletcher 1920). These species are native to Indonesia and Malaysia, and are now widely cultivated throughout South East Asia (Orwa et al. 2009). In northern Australia, A. bilimbi is relatively uncommon (Gregory Chandler, pers. comm.) although it is grown in suburban gardens and its fruit are sold in local markets (Louis Elliot pers. comm.), whereas A. carambola is both a common garden plant and also grown commercially. Of the approximately 3350 commercially-grown A. carambola trees in Australia, 65.7% are grown in Queensland with the bulk in regional areas surrounding Rockhampton and Bundaberg. The remaining 34% are grown in the Darwin rural area and there is also a small commercial plantation in the Kimberley region of Western Australia. The estimated production potential of Carambola, at a yield of 45 kg/tree, is 150 tonnes valued at $1.21M per year (Fanning & Diczbalis, 2013). There are no native species of Averrhoa in Australia and the most closely related plants in Australia are species from Oxalis and Biophyllum, neither of which is known to host D. fasciola.

Bainbrigge Fletcher (1932) summarised the biology of Diacrotrica fasciola. The eggs are usually laid on or near flower buds and the newly emerged larvae bore into the flower buds, but they do not feed on leaves. The larvae are dark pink in colour (Figure 1) but they turn green prior to pupation (Figure 2). The pupae are light green and are attached to the underside of leaves by strands of silk in an upright position. Pupation lasts only a few days. The adults (Figure 3) readily fly when leaves are disturbed, but do not move far from the host plant.

The detection of a population of D. fasciola near Darwin prompted more extensive surveys for this pest across northern Australia and in Timor-Leste.

Methods

Surveys for Diacrotrica fasciola were conducted at a range of sites in northern Australia and in Timor-Leste (Table 1). Adults were collected by sweep netting foliage of Carambola or directly by hand from leaves. Larvae were dislodged from Carambola buds and blossoms by beating into a white tray held underneath the flowers. Pupae were located by visual examination of the underside of the leaves. Larvae and pupae were reared in plastic rearing cages with a mesh lid and plenty of foliage and inflorescence. A series of larvae were immersed in near boiling water for 1 minute then preserved in 70% ethanol for permanent storage. Additionally, pterophorid moths lodged in the Northern Territory Economic Insect Collection and the Museum and Art Gallery of the Northern Territory were searched for specimens of D. fasciola.
Figure 1. Early instar larva *Diacroticha fasciola* feeding on bud of *Averrhoa carambola*. (Brian Thistleton)

Figure 2. Final instar larva of *Diacroticha fasciola* is green upon pupation. (Brian Thistleton)
A range of reared and collected adults were pinned and the genitalia of male and female specimens were prepared according to the method described by Robinson (1976), with some modifications. The following suite of characters served to separate adult *D. fasciola* from other Pterophoridae known from Australia and from the two congeneric species listed by Gielis (2003a) and Alipanah *et al.* (2011), and these were used to confirm the identity of specimens. The forewing lobes are deeply cleft and finely pointed. There is a distinctive pattern of markings on the abdomen and forewing, in particular dark markings on the leading edge of the hind lobe of the forewing. There are prominent upraised scales on top of the head (Diakonoff 1952) (Figure 3).

A small piece of tissue from each of the specimens listed in Table 2 was subjected to DNA extraction using the DNeasy Blood and Tissue Kit (QIAGEN, Doncaster, Australia) following the manufacturer's instructions. The DNA was eluted in 200 µL of AE buffer and stored at -20°C. The LCO1490 and HCO2198 primers (Folmer *et al.* 1994), which target the 5' end of the cytochrome oxidase subunit 1 mitochondrial gene commonly referred to as the DNA barcode region (Hebert *et al.* 2003), were used for PCR amplification as described in Bellis *et al.* (2013).

The following acronyms refer to repositories where material has been lodged or accessed:

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Repository</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTQIC</td>
<td>Northern Territory Quarantine Insect Collection, Darwin</td>
</tr>
<tr>
<td>NTEIC</td>
<td>Northern Territory Economic Insect Collection, Darwin</td>
</tr>
<tr>
<td>MAGNT</td>
<td>Museum and Art Gallery of the Northern Territory, NT</td>
</tr>
</tbody>
</table>
Table 1. Sites surveyed for *Diacotricha fasciola* and specimen collection details. The word “NIL” in the final column indicates that no specimens were detected.

<table>
<thead>
<tr>
<th>Country</th>
<th>Region</th>
<th>Location</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Date inspected</th>
<th>Surveillance team</th>
<th>Specimens collected/lodged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>NT</td>
<td>Bees Creek</td>
<td>12.5936°S</td>
<td>131.0542°E</td>
<td>05 MAR 2013</td>
<td>SJ Anderson, GA Bells</td>
<td>5', 7', NTQIC</td>
</tr>
<tr>
<td>Australia</td>
<td>NT</td>
<td>Bees Creek</td>
<td>12.5936°S</td>
<td>131.0542°E</td>
<td>17 APR 2013</td>
<td>B Thistleton, GA Bells, SJ Anderson</td>
<td>38 NTQIC, 62 NTEIC</td>
</tr>
<tr>
<td>Australia</td>
<td>NT</td>
<td>Acacia Hills</td>
<td>12.7500°S</td>
<td>131.1500°E</td>
<td>01 FEB 2012</td>
<td>B Sandy</td>
<td>2 NTEIC</td>
</tr>
<tr>
<td>Australia</td>
<td>NT</td>
<td>Girraween</td>
<td>12.5481°S</td>
<td>131.0908°E</td>
<td>MAR 2013</td>
<td>W Speed</td>
<td>3', NTQIC</td>
</tr>
<tr>
<td>Australia</td>
<td>NT</td>
<td>Alawa</td>
<td>12.3808°S</td>
<td>130.8755°E</td>
<td>05 JUN 2013</td>
<td>SJ Anderson</td>
<td>2', NTQIC</td>
</tr>
<tr>
<td>Australia</td>
<td>NT</td>
<td>Lambells Lagoon</td>
<td>12.5061°S</td>
<td>131.1887°E</td>
<td>14 MAR 2014</td>
<td>SJ Anderson</td>
<td>1', 1', NTQIC</td>
</tr>
<tr>
<td>Australia</td>
<td>NT</td>
<td>Wagat Beach</td>
<td>12.4311°S</td>
<td>130.7507°E</td>
<td>11 MAR 2014</td>
<td>GA Bells</td>
<td>3', NTQIC</td>
</tr>
<tr>
<td>Australia</td>
<td>NT</td>
<td>Jingili</td>
<td>12.4402°S</td>
<td>130.8541°E</td>
<td>04 NOV 2014</td>
<td>SJ Anderson</td>
<td>1 NTQIC</td>
</tr>
<tr>
<td>Australia</td>
<td>NT</td>
<td>Stuart Park</td>
<td>12.4397°S</td>
<td>130.8794°E</td>
<td>04 NOV 2014</td>
<td>SJ Anderson</td>
<td>1 NTQIC</td>
</tr>
<tr>
<td>Australia</td>
<td>Qld</td>
<td>Redlynch Valley, via Cairns</td>
<td>16.9567°S</td>
<td>145.6897°E</td>
<td>28 APR 2013</td>
<td>JA Walker</td>
<td>1', 8', NTQIC</td>
</tr>
<tr>
<td>Australia</td>
<td>Qld</td>
<td>Cooktown</td>
<td>15.2860°S</td>
<td>145.1457°E</td>
<td>13 FEB 2014</td>
<td>GA Bells</td>
<td>3', 2', NTQIC</td>
</tr>
<tr>
<td>Australia</td>
<td>Qld</td>
<td>Ayrton</td>
<td>17.2667°S</td>
<td>145.2667°E</td>
<td>APR 2013</td>
<td>JA Walker</td>
<td>NIL</td>
</tr>
<tr>
<td>Australia</td>
<td>WA</td>
<td>Kununurra</td>
<td>15.7223°S</td>
<td>128.6923°E</td>
<td>10 JUN 2013, 8 SEP 2014</td>
<td>L Halling</td>
<td>NIL</td>
</tr>
<tr>
<td>Australia</td>
<td>WA</td>
<td>Broome</td>
<td>17.9865°S</td>
<td>122.2043°E</td>
<td>25 APR 2013</td>
<td>L Halling</td>
<td>NIL</td>
</tr>
<tr>
<td>Australia</td>
<td>WA</td>
<td>Djarndjin, Dampier Peninsula</td>
<td>16.5152°S</td>
<td>122.8949°E</td>
<td>23 APR 2013</td>
<td>R James</td>
<td>NIL</td>
</tr>
<tr>
<td>Timor-Leste</td>
<td>Lautem</td>
<td>Lualira via Lospalos</td>
<td>8.5256°S</td>
<td>127.0041°E</td>
<td>09 MAY 2013</td>
<td>GA Bells</td>
<td>2 NTQIC</td>
</tr>
<tr>
<td>Timor-Leste</td>
<td>Lautem</td>
<td>Suku Lore 1</td>
<td>8.6808°S</td>
<td>126.9967°E</td>
<td>10 MAY 2013</td>
<td>GA Bells</td>
<td>2', NTQIC</td>
</tr>
<tr>
<td>Timor-Leste</td>
<td>Dili</td>
<td>Comoro</td>
<td>8.4846°S</td>
<td>125.5551°E</td>
<td>20 MAY 2013</td>
<td>GA Bells</td>
<td>4', NTQIC</td>
</tr>
</tbody>
</table>
Results

Specimens of *Diacrotricha fasciola* were detected from the northern part of the Northern Territory, northern Queensland and the northern coast of Timor-Leste (Table 1). At all sites harbouring *D. fasciola*, adult moths were easily seen after being disturbed during sweep netting activities. No moths were detected at Atherton, Kununurra, Broome or the Dampier Peninsula (Table 1).

The cytochrome oxidase subunit 1 gene was amplified from four specimens with consensus sequence readings greater than 550 bp. One specimen had a consensus reading of less than 300 bp, which is too short to be considered as a DNA barcode and was not submitted to GenBank (data not shown). All consensus sequences had over 99% sequence similarity with specimens from the family Pterophoridae from private entries to GenBank which are yet to be released to the public. There were no high sequence similarity matches on GenBank. The DNA barcodes were submitted to GenBank and the accession numbers are listed in Table 2.

Table 2. Specimens used for DNA barcoding analysis.

<table>
<thead>
<tr>
<th>Specimen identifier</th>
<th>Details</th>
<th>GenBank Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENQ33232</td>
<td>Australia, Acacia Hills, Mocatto Rd 12.7500°S, 131.1500°E 2012 Coll: B. Sandry</td>
<td>KM363763</td>
</tr>
</tbody>
</table>
Discussion

It is unlikely that *Diacrotricha fasciola* is native to Australia as neither of its host plants is native to this country. The widespread distribution and lack of previous reports of *D. fasciola* throughout the Darwin rural area suggests this species has been able to establish undetected and disperse between Carambola crops since 2012. This relatively widespread occurrence is most likely nowadays a reflection of the low priority given to the pest fauna of this plant due to its low economic importance in this region rather than indicating a recent detection.

Adult *Diacrotricha fasciola* are readily visible following disturbance by sweep netting. This high visibility, plus Tan’s (1992) discovery of *D. fasciola* on every farm growing Carambola that was inspected in Malaysia, lends credence to the negative results reported here from Western Australia. Even so, no specimens were observed on the single tree inspected at Atherton in Queensland, so it would be prudent to resurvey Carambola crops in areas free from *D. fasciola* whilst plants are flowering to maximise the chances of detecting this pest. Areas apparently free from infestation of *D. fasciola*, such as northern Western Australia, would benefit from maintaining this pest-free status.

There is little known about the dispersal and ecology of *D. fasciola*. Wind-assisted dispersal has been suggested as the agent responsible for the sudden appearance of other species of Lepidoptera in northern Australia, which presumably arrived from Timor-Leste (Braby *et al.* 2014) or from New Guinea (Royer 2009), and this may also be the pathway used by *D. fasciola* to enter northern Australia. The lack of reports of this species from Papua New Guinea (Giclis 2003b), however, casts doubt over that country as the origin of the Queensland populations. Surveys of Carambola plantings from the northern Cape York Peninsula and from New Guinea may clarify the status of *D. fasciola* in this region. Alternatively, DNA analyses could potentially be used to compare the genetic diversity of Northern Territory and Queensland populations which may help to elucidate the source of these populations.

Acknowledgements

We are grateful to the property owners for access to plants during the survey. In particular we thank Chris Nathaniel, Bill Speed and Rebecca James for their co-operation during our surveys and Gregory Chandler for his botanical expertise. We thank Buck Richardson for his persistence in obtaining a positive identification and field work. We would also like to thank Richard Willan for the invitation to submit this paper and Louis Elliott for reviewing the manuscript.

References

