There has been a lot of interest in a low priced 68000™
single board computer for experimenting or process control,
and a group of us got together at SOG last year to discuss the
situation. We are interested in the 68000 because it is big, fast,
cheap, and well supported. The 8086 family is dominated by MS-
DOS/PC-DOS™ machines which are designed as office
machines, and the other 32 bit micro processors are not very
well supported. We wanted to work with a processor for which
books are available, and we also wanted other companies to
provide software for the new machine.

The major problem in experimenting with the 68000 has
been the lack of a readily available low-cost operating system
and programming utilities. As a result of our discussions, Joe
Bartel (Hawthorne Technology) offered to supply a single-user
version of his 68000 operating system complete with the source
code and the compiler for his HTPL™ language (in which the
system is written) for $50. He's even throwing in a line editor
and a 68000 assembler.

Once we had the operating system, we started searching for
suitable hardware since not all of us are interested in designing
and wirewrapping the main CPU board. I understand that some
people are porting Hawthorne’s K-OS ONE™ operating system
over to the Atari ST™ (which is a great hardware bargain), but
we also need a small low cost board which can be mounted on
robotic arms and other places where an ST is too big or is
technically unsuitable. After all, for many controller
applications we don't need sound, graphics, drives, keyboard, or
monitor; but we do need complete bus access so that we can
provide lots of I/O. Joe came up with another winner which is
the 68000 single board computer he calls “The TinyGiant™.”

Every computer is designed to fill a particular goal or
market niche, and The TinyGiant was designed to be as low cost
as possible while still providing the needed features. The target
price was set at $395, and when a choice had to be made they
looked at the original goal. Then they looked at what was needed
to make a usable small development system. There had to be a
disk of some kind. There also had to be enough I/O to support a
terminal and some kind of printer and a modem. They didn’t put
a video controller on the board because they felt that many of
these would be used in places where video was not needed. Also
video would have made the board much larger and more costly.
Dynamic RAMs were used because of the lower cost.

The TinyGiant is a complete 68000 system on a single board.
The main component is the 68000 that runs at 8 MHz. with no wait
states. There are two EPROMS, a dynamic RAM controller,
four RAM chips, and a 68681™ dual serial chip. There is also an
unbuffered expansion bus provided.

The 68681 is almost a complete I/O system on a single chip.
There are two serial ports and a timer on the 68681. There are
also some extra input and output bits that can be used. Each
serial port has its own internal baud rate generator that can be
set from 50 to 9600 baud. The system startup assumes that the
console terminal on the first port is set to 9600 baud. The other
port is assumed to be for a modem and is set to 1200 baud. This
port could be used to support a serial printer if a modem is not
needed. The timer is used as the basic system timer for a time of
day clock. When the PRN device is selected, a parallel printer
port made from a latched buffer is used.

The 1770™ floppy controller can control up to four 5¼ or 3¼
inch floppy disk drives. At the present time the software is only
supplied on 5¼ inch floppy disks, but it will also be supplied on
3½ disks in the near future. The 1770 controller has an internal
clocked digital data separator so no adjustments are needed.
There is no DMA controller so all I/O is done with interrupts.

The board is supplied with 128k of RAM but can be expanded
to 512k by simply adding the memory chips. The memory is
controlled with an MB1422™ dynamic RAM controller which takes
care of all the timing and refresh for the 64k x 4 dynamic RAMS.
There are four RAM chips in the basic machine, 12 more can be
added on board, and an expansion board can be added to provide
additional memory. There are two EPROMS that contain the
boot code and a very simple hardware debug monitor, and there
is a lot of empty space in the PROMS that could later be used for
code.

There are two expansion connectors that provide all the
needed address, data, and control lines. The 64 pin expansion
bus connector has all the raw signals just as they are on the
68000 itself and it is an unbuffered bus which means that buffers
have to be provided for the bus lines on the first expansion
board. The other expansion connector has some signals derived
from logic on board. There is a priority interrupt encoder that is
connected to avoutector interrupts.

To use the TinyGiant you have to connect a power supply, a terminal, and a disk drive. The board requires only 5 volts at about 2 amp and some at +12 volts for the RS-232 (the -12 for the RS-232 is generated on board), and the power connector is the same as a floppy drive. The EPROM monitor is set up to boot the K-OS ONE operating system from a floppy disk when the power is applied. All of this should be in a proper case, and any of the cases for the Ampro Little Board® should work fine because the board is the same size. The cases and power supplies for the PC clones should also work and are available at very low prices.

The software that comes with the TinyGiant has many features that will remind you of CP/M® or MS-DOS. The disks are compatible with MS-DOS which means that you can move data files from your new machine to your PC easily. The standard command processor is modeled after MS-DOS but does not have batch files. The editor is a line editor but is much better than ED® or EDLIN®. The assembler is a two pass absolute assembler that has include files but no macros. The compiler is for HTPL, the language used to write the K-OS ONE operating system.

People who currently use a Z-80® and are interested in moving up will be interested in the board. Also anyone who wants to learn about the 88000 without having to dig through a difficult operating system will like it. The price of the board is competitive with the 80 and 86 family boards and so is the price of the software. The small size and power make it great for control applications. The use of MS-DOS compatible disks makes it very convenient for data capture. The operating system makes it good for a personal computer or for experimenting.

At the present time there are a limited number of programs that will run under K-OS ONE. This will improve in the next few months as the companies that purchased the first copies of K-OS ONE bring their products to market. For any new system there is a delay between when it is first delivered and when lots of software is available for it. Some of the software that will be available is code that is being ported from other systems.

For languages there is the assembler and the HTPL compiler that come with the basic machine, and the operating system is written in HTPL so that it can be recompiled on the system. Most of the development is being done in HTPL, but the source code for the runtime library is written in assembler and is supplied in source form. For many applications most of the code can be written in HTPL with the speed critical portions written in assembler. Also there are some functions that are much easier to write or much smaller in assembler. I understand that a C compiler is being ported over to the system.

Externally, the operating system can look like anything you want it to. The command processor provides looks a lot like MS-DOS but you can change it because it is a separate program like the CCP is in CP/M and you are provided with the source code. In a dedicated application the command processor could be replaced by a menu to load a set of application programs. A command processor could also be written that would make it look like a Unix system was being used if that was desired.

Internally, the operating system resembles Unix® or MS-DOS 2.0 except that it is greatly simplified. All system calls are done in a manner similar to MS-DOS where the required information is placed in a parameter block and then a trap instruction gives control to the system. All error information is returned in memory in the parameter block. This makes it very easy to use system functions directly in a high level language. The use of Unix like files instead of file control blocks like CP/M means that any application written will still run even if there are radical changes to the internal structure of the disks.

HT68K TinyGiant Hardware Description

There are 6 connectors on the TinyGiant board that connect it to the real world. Two of these are for expansion, one for the console serial port, one for the auxiliary serial port, one for the printer, and finally one for the disk drives.

The size and shape of the board is such that it can be booted to the side of a standard 5¼ inch floppy disk drive, and the power connector for the +5 and +12 is the same as used on a floppy disk drive. The +12 volts is converted to -12 for RS-232 by an onboard power converter. Most of the cheap PC close power supplies already have the connectors wired for floppy disks so one of them can be used.

The expansion bus is divided between two connectors, P1 and P2. The P1 connector brings out all the basic 68000 control signals. These come directly from the 68000 cpu chip and are not buffered. The remaining signals come from the P2 connector. Any signal should be buffered before it is used on an expansion board.

When power is applied the PROM is at location 0. As soon as the serial port is addressed the PROM is shifted into high memory. This is taken care of in the boot PROM so all the user will see is RAM memory at location 0. The BIOS is in PROM so it is assumed to run at $380000. All interrupts are auto vectored, some are dedicated to devices on the board and some are available on the expansion connector.

```
P1 CONNECTOR -- EXPANSION
1 = D4  33 = D5
2 = D5  34 = D6
3 = D2  35 = D7
4 = D1  36 = D8
5 = D0  37 = D9
6 = A5*  38 = D10
7 = UDS*  39 = D11
8 = LDS*  40 = D12
9 = R/WM  41 = D13
10 = DTACK*  42 = D14
11 = BG*  43 = D15
12 = BHOST*  44 = D16
13 = BR*  45 = A23
14 = VCC, 5 V  46 = A22
15 = CLK, 8 MHz  47 = A21
16 = GND  48 = VCC, 5 V
17 = HALT*  49 = A20
18 = RESET*  50 = A19
19 = VMA*  51 = A18
20 = E  52 = A17
21 = VPA*  53 = A16
22 = BERR*  54 = A15
23 = IPL2*  55 = A14
24 = IPL1*  56 = A13
25 = IPL0*  57 = A12
26 = FC2  58 = A11
27 = FC1  59 = A10
28 = FC0  60 = A9
29 = A1  61 = A8
30 = A2  62 = A7
31 = A3  63 = A6
32 = A4  64 = A5
```

The Computer Journal / Issue #27
Where Do We Go From Here?

It's very likely that the 68000 will replace the Z80 as the choice for hobby and experimental projects, and the combination of the TinyGiant and the K-OS ONE operating system will provide a very good development platform.

The lack of software is a major problem with any new hardware or operating system — developers won't write the programs until a lot of the systems are sold, and people won't buy the systems until a lot of software exists — at least that's true with a mass market appliance-type computer. But this is initially aimed at a different market, and I believe that Hawthorne has made several very smart moves. For one, they're supplying the system with the board, and the system (whether obtained separately or with the board) includes the OS source code plus the language compiler, a 68000 assembler, and a line editor so that you have the utilities to start writing programs. Another very good move is that even though Hawthorne is selling a single board computer, they still want to sell their operating system to hardware companies even if they are directly competing with Hawthorne! Joe has also been in contact with a lot of potential 68000 programers who were frustrated with the lack of a low cost operating system, and there will soon be a rapidly expanding base of software.

One of the most significant points is that you get the operating system with the source code (plus the other goodies) for only $50. Has any one else ever supplied the OS source code? I doubt it, because many CP/M hardware vendors wouldn't even supply the source code for their customized CIOS. With the low cost OS and its source, you can customize it for your own particular application, and it's cheap enough so that you can include it with your software.

I feel that the use of K-OS ONE is going to expand very rapidly, and we at TCJ are going to fully support this growth.

68000 Reference Book List

68000, 68010, 68020 Primer, by Kelly-Bootle and Fowler, The Waite Group, Howard W. Sams
The 68000: Principles and Programming, by Leo Scanlon, Howard W. Sams
68000 Assembly Language: Techniques for Building Programs, by Donald Krantz and James Stanley, Addison-Wesley Publishing Company
68000 Assembly Language Programming, by Lance Leventhal, Doug Hawkins, Gerry Kane and William D. Cramer, Osborne/McGraw-Hill
Basic Microprocessors and the 68000, by Ron Bishop & the Motorola Semiconductor Group, Hayden Books
Dr. Dobb’s Techbook of 68000 Programming, Edited, Prentice Hall
Programming the 68000, by Rosenzweig and Harrison, Hayden Books
68000 SINGLE BOARD COMPUTER
$395.00
32 bit Features / 8 bit Price

Hardware features:
* 8MHz 68000 CPU
* 1770 Floppy Controller
* 2 Serial Ports (68681)
* General Purpose Timer
* Centronics Printer Port
* 128K RAM (expandable to 512K on board)
* Expansion Bus
* 5.75 x 9.0 inches
* Mounts to Side of Drive
* +5V 2A, +12 for RS-232
* Power Connector same as disk drive

Add a terminal, disk drive
and power, and you will have
a powerful 68000 system.

ASSEMBLED AND TESTED ONLY $395.00

K-OS ONE, 68000 OPERATING SYSTEM

For your existing 68000 hardware, you can get the K-OS ONE Operating System package for only $50.00. K-OS ONE is a powerful, pliable, single user operating system with source code provided for operating system and command processor. It allows you to read and write HS-DOS format diskettes with your 68000 system. The package also contains an Assembler, an HTPL (high level language) Compiler, a Line Editor and manual.

SHIPPED ON AN HS-DOS 5 1/4" DISK........ $50.00

Order Now:
VISA, MC
(503) 254-2005

HAUPTWO TECHNOLOGY
8836 S.E. Stark
Portland, Or 97218

TURBO PROGRAMMERS-

...CUTS DEBUGGING FRUSTRATION.
Turbogplus is a new, interactive symbolic debuggerr that integrates with Turbo Pascal to let you:
* Examine and change variables at runtime using symbolic names -- including record, pointer, array, and local variables;
* Trace and set breakpoints using procedure names or source statements;
* View source code while debugging;
* Use Turbo Pascal editor and DOS DEBUG commands.

Turbo Programmers also includes a special MAP file generation module fully compatible with external debuggers such as Periscope, Atrion, Speakdog, and others...Even on programs written with Turbo EXTENDER:

An extended, supported version of the acclaimed public domain program TUEBUG, the Turbo plus package includes one ODDO disk complete source code, a reference card, and an 80-page printed manual. $25a of memory required. Simply debugging! $60 COMPLETE.

TURBO EXTENDER
Turbo EXTENDER provides you the following powerful tools to break the 64K barrier:
* Large Code Model allows programs to use all 64K without overlays or chaining, while allowing you to convert existing programs with minimal effort, makes EXE files;
* Mode Facility offers separate compilation eliminating the need for you to recompile unchanged modules;
* Large Data Arrays automatically manages data arrays up to 30 megalobes as well as any arrays in expanded memory (EMS);
* Additional Turbo EXTENDER tools include Overlay Analyst, Disk Cache, Pascal Encrytor, Shell File Generator, and File Browser.

The Turbo EXTENDER package includes two ODDO disks, complete source code, and a 150-page printed manual. Order now! $85 COMPLETE.

TURBOPOWER UTILITIES
If you own Turbo Pascal, you should own TurboPower Programmers Utilities, that's all there is to it...Bruce Webber, BYTE Magazine
The Turbo Power Utilities package includes three ODDO disks, reference card, and manual. $95 with source code, $55 executable only.

ORDER DIRECT TODAY:
* MC/VISS Call Toll Free 7 days a week. 800-538-8157. (830) (US)
 1-800-524-8310 (CA)
* Limited Time Offer Buy two or more TurboPower products and save 15%!
* Satisfaction Guaranteed or your money back within 30 days.
For Brochures, Dealer or other Information, PO, COD -- call or write:
3109 Scotts Valley Dr., Scotts Valley, CA 95066
(408) 438-9500
M-F 9AM-5PM PST

The above TurboPower products require Turbo Pascal 3.0
(standard, 887, or 8CD) and PC-DOS 2.7 or 3.0, and run on the IBM PC XT/AT and compatibles.